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Abstract: The present research work focuses on overcoming cybersecurity problems in the Smart Grid.
Smart Grids must have feasible data capture and communications infrastructure to be able to manage
the huge amounts of data coming from sensors. To ensure the proper operation of next-generation
electricity grids, the captured data must be reliable and protected against vulnerabilities and
possible attacks. The contribution of this paper to the state of the art lies in the identification of
cyberattacks that produce anomalous behaviour in network management protocols. A novel neural
projectionist technique (Beta Hebbian Learning, BHL) has been employed to get a general visual
representation of the traffic of a network, making it possible to identify any abnormal behaviours and
patterns, indicative of a cyberattack. This novel approach has been validated on 3 different datasets,
demonstrating the ability of BHL to detect different types of attacks, more effectively than other
state-of-the-art methods

Keywords: smart grid; computational intelligence; automatic response; exploratory projection
pursuit; neural networks

1. Introduction

Care for the environment is not a simple trend. It is a very important matter from a legal point
of view. Governments have already implemented regulations, making it compulsory to take action
against environmental degradation, and there will certainly be more regulations in the future. It is
necessary to remark that zero impact is impossible from a practical point of view. Nevertheless, it is
necessary to pursue sustainability and to minimize impact [1]. Renewable energy systems play a very
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important role [2]. The environmental impact caused by this type of systems is much lesser than of
conventional sources, especially when their useful life is taken into account [3].

From a theoretical point of view, depletable resources should be fully replaced by renewable
energy. However, if we consider the electric sector as a global unit, our current possibilities are still too
limited. In fact, several state-of-the-art studies have concluded that increasing the use of renewable
energies could destabilize the energy system [4,5].

Some highly developed countries have implemented regulations that make the use of renewable
energy sources obligatory, especially in new buildings. However, the connection of those buildings
to the power network makes energy management very difficult. This is because, even when they
generate energy that is not electricity, they can still cause the energy demand to reduce.

The main problem of the electric sector is that the levels of energy production must be equivalent
to the amount of energy being consumed [6]. This justifies the need for energy storage systems which
mitigate problems associated with unbalanced generation and consumption levels [7]. Thanks to this
kind of system, when excess energy is generated, the excess consumption can be stored, similarly, when
the energy needs are greater than the amount of generated energy, the storage system may supply the
required energy. The main problem currently is that energy storage systems are inefficient [8].

Considering the problems described above, the optimal management of every part of the power
network is mandatory. However, to make efficient management possible, it is necessary to develop
adequate tools that will ensure the correct performance of the system as a whole [9]. The term Smart
Grid [9,10] emerged as an answer to all the issues described above. The Smart Grid makes it possible to
measure the levels of energy generation/consumption and forecast the future levels of both variables,
making it possible to manage the entire system more effectively. Nevertheless, the task of precisely
adjusting energy generation to demand continues to be very complex, thus, it is preferable to use an
energy storage system [7].

From a global context, a smart grid can be defined as the dynamic integration of developments
in electrical engineering and energy storage, the advances in information and communication
technologies (or ICT), their implementation in the electricity-related processes (generation, transport,
distribution, storage and marketing, including alternative energy) [11]. ICT makes it possible to
concatenate security, control, instrumentation, measurement, quality and administration of energy,
etc., in a single management system, with the primary objective of making efficient and rational use of
electricity [12].

The concept described above could also include the integration of other actors in the area of
measurement and control, such as gas sources and water services. Thus, smart electricity networks
become part of a macro-concept of territorial dominance, such as that of smart cities [13]. The smart
grid is a type of efficient electricity management that uses computer technology to optimize the
production and distribution of electricity, in order to achieve a greater balance between supply and
demand, as well as producers and consumers [11].

The smart grid must be protected from all types of vulnerabilities, like natural disasters, and of
course, it must be robust against attacks [14]. Security is essential because otherwise the information
flow between all the actors would not be reliable [15]. In consequence, the smart grid concept would
fail completely [16]. Robust communications and the reliability of the information must be guaranteed
in all cases for satisfactory smart grid performance [12,14].

Among the actors in the Smart Grid, there are three crucial components to which special attention
should be paid [9]: data acquisition, data management and communications. It is necessary to ensure
secure communications and the reliability of the available data. Moreover, protection mechanisms
must be implemented for protection against any type of attack. The above-mentioned goals may be
achieved thanks to advances in cybersecurity [17].

Cybersecurity has become a relevant field in multiple areas and it is the basis of the
proposed solution.
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The main objective of this research is to identify cyberattacks which produce anomalous
behaviours in network management protocols. This has been made possible through the use of
a novel neural projectionist technique called Beta Hebbian Learning (BHL), which provides a visual
representation of the network traffic and detects abnormal network behaviours and patterns, indicative
of a cyberattack.

The rest of the paper is structured as follows: Section 2 presents a review of sate-of-the-art research
in the field. Section 3 describes the main materials and methods used in this research, including the
datasets, and the novel Beta Hebbian Learning algorithm used for attack detection. The next section
details the results of each of the experiments performed on the real datasets, and finally, Section 5
presents the conclusions.

2. Literature Review

This section presents related state-of-the-art literature and the principal advantages of the
proposed model.

Several authors carried out research on building a system for real-time intrusion detection by
training it with a dataset.

However, current systems are only able to detect some but not all the indications of an
intrusion. This is because they are not able to monitor all the behaviours in the network On the
contrary, projectionist techniques are able to provide a visual overview of the network traffic. Earlier
dimensionality reduction techniques were applied to visualize network data using scatter plots [18-23].

In the case of [24], several projectionist algorithms, such as PCA, CMLHL, CCA, and SOM network,
have been applied to monitor the traffic of the Euskalert network (Honeynet data) [25], to discover
behaviour and strategies indicative of an attack. In [26], the same techniques have been applied to
GICAP-IDS and DARPA datasets [27], and their performance has been measured according to different
variables, such as data volume, system dynamics and network traffic diversity, including first-time
attacks (0-day). Then, the authors presented a novel Multi-Agent System which combined Artificial
Neural Networks (ANN) with Case-Based Reasoning (CBR) techniques for the detection of attacks in
computer networks [28]. This new IDS, known as RT-MOVICABIDS, has been validated using three
different datasets. Those datasets have also been used in our study, as described further on in the
article. In [29], clustering and visualization techniques have been combined to generate an automatic
response to the previously developed MOVICAB-IDS system. The modified MOVICAB-IDS has been
applied to the three datasets, to assess the improvement of the proposed approach. Furthermore,
in [30], it has been validated using a community search dataset. This type of attack involves guessing
the password, it has been detected by MOVICAB-IDS, which demonstrated to perform better than
other well-know algorithms for detecting attacks on continuous network flow.

Finally, in [31], MOVICAB-IDS has been applied to a dataset that contained flow-based
information (14.2 M flows). The University of Twente [32] collected this information in September
2008, using a honeypot.

More recently, a novel EPP algorithm, BHL, has been applied to Android malware families [33,34],
obtaining much better results than other well-known algorithms.

BHL has also been previously employed in the analysis of the internal structure of a series of
datasets [35,36], providing a clear projection of the original dataset. More specifically, it has been
successfully applied to Android malware datasets [33,34], where its task was to characterize Android
malware families. Therefore, this research aims to apply BHL to the datasets that have previously
been used by MOVICAB-IDS, with the aim of improving the obtained projections and achieving a
better visual representation of the network traffic. This facilitates the early identification of anomalous
situations which may be indicative of a cyberattack in the computer network.
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3. Materials and Methods

In this research, the Exploratory Projection Pursuit (EPP), called Beta Hebbian Learning algorithm
(BHL) [37], has been employed. It is based on beta distribution and has been applied to 3 real datasets
in order to assess its ability to detect anomalous situations in the network management protocol.
Its performance has been compared with the results obtained by the MOVICAB-IDS algorithm [29].

3.1. Preprocessing

Before using the obtained dataset, they had to undergo a preprocessing stage. First, all missing
values were removed.

Outliers have been removed in order to prevent them from being identified as intrusion samples,
as this would have affected the training process. Considering as outliers the samples with values
outside the y &= 502 range, where i is the average and ¢? is the variance.

The application of this criterion may lead to a situation where some outliers could be considered
as intrusion samples. However, their influence on the training process would be insignificant, given
that their degree of deviation from the mean would have been small. Although once the system is
trained these extreme outliers could be identified as intrusions, a real intrusion is never considered as
normal behaviour due to the influence of the outliers during the training process.

Finally a normalization of each variable between the range -1 to 1 has been applied to ensure the
stability of the BHL network during the training process [37].

3.2. Beta Hebbian Learning Algorithm

Artificial Neural Networks (ANN) are typically software simulations that emulate some of the
features of real neural networks found in the animal brain. Among the range of applications of
unsupervised artificial neural networks, data projection or visualization is the one that facilitates,
human experts, the analysis of the internal structure of a dataset. This can be achieved by projecting
data on a more informative axis or by generating maps that represent the inner structure of datasets.
This kind of data visualization can usually be achieved with techniques such as Exploratory Projection
Pursuit (EPP) [37,38] which project the data onto a low dimensional subspace, enabling the expert to
search for structures through visual inspection.

The Beta Hebbian Learning technique (BHL) [31] is an Artificial Neural Network belonging to the
family of unsupervised EPP, which uses Beta distribution as part of the weight update process, for the
extraction of information from high dimensional datasets by projecting the data onto low dimensional
(typically 2 dimensional) subspaces. This technique is better than other exploratory methods in that it
provides a clear representation of the internal structure of data.

The Beta Hebbian Learning network is based on a Negative Feedback Network, therefore to
introduce it, consider an N-dimensional input vector, x, and a M-dimensional output vector, y, where
Wi;j is the weight linking input j to output i and let 77 be the learning rate.

The initial situation is that there is no activation at all in the network. The input data is feedforward
via weights from the input neurons (the x-values) to the output neurons (the y-values), where a linear
summation is performed to activate the output neuron (see Figure 1). This is expressed by Equation (1).

N
yi =) Wix;Vi 1)
=1

The activation is feedback through the same weights and is subtracted from the inputs
(see Equation (2)).

M
Feedback : ej = xj — ) Wiy @
i=1
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After that, simple Hebbian learning is performed between input and outputs, the weight update
is obtained by means of Equation (3).
AWij = nejy; 3)

The effect of the negative feedback is to stabilize the learning in the network. For this reason, it is
not necessary to normalize or clip the weights to achieve a stable solution.

Wij

Figure 1. Basic architecture of a negative feedback network

Note that this algorithm is clearly equivalent to Oja’s Subspace Algorithm (Equation (4)).
M
AW = n(xj = Y Wiyi)yi @
i=1

This network is capable of finding the principal components of the input data in a manner that is
equivalent to Oja’s Subspace algorithm. Thus, it may be said that the network uses simple Hebbian
learning to enable the weights to converge and extract the maximum content from the input data.

Since the model is equivalent to Oja’s Subspace algorithm, we might legitimately ask what we
gain by using the negative feedback in this way.

Writing the algorithm in this way, gives a model of the process which allows to devise different
versions and algorithms like the Beta Hebbian Learning rule. This rule is based on an explicit view of
the residual which is never independently calculated using e.g., Oja’s learning rule.

A general cost function associated with the Beta Hebbian Learning network can be denoted as
Equation (5)

J = E(=p(e)) ®)

where E is the expected value operator.
Therefore, the gradient descent J is presented in Equation (6).

3] 9] oe

o ©)

AW =W = "W

Thus, the optimal cost function can be obtained if the PDF of the residuals is known. Therefore,
the residual (e) can be expressed by Equation (7) in terms of Beta distribution parameters (B(«a, B)):

ple) = e“_l(l — e)ﬁ_1 =(x— Wy)“_l(l x4+ Wy)ﬁ—l @)

where « and § control the PDF shape of the Beta distribution, e is the residual, x are inputs of the
network, W is the weight matrix, and y is the output of the network.
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Finally, gradient descent can be used to maximize the likelihood of the weights (Equation (8)):

aavlz; = 85\7 [( z]]/l)a 1<1_x +W1]]/1)/5 ]:

[(& = 1) (%) — Wiyi) > (=yi) (1 — x; + Wijyi)ﬁ_l]
[(xj = Wiyi)* 1B = 1)(1 — x; + Wijyi)P~

[(a = 1)ef 2 (—yi) (1 —ep)P 1+ [ef 1 (B~ 1) (1 —¢))P 2y,

AW

“yi]

2 1 2] ®)

yiet 2w = D)(=1)(1 = )P + (B~ 1)(1—¢))f %] =

yiet 21— ep)P 2 [(a = 1)(-1)(1 —¢)) +¢;(p—1)] =

yie;?‘_z(l—ej)ﬁ_z[(—oc+ejoc+1 ej +ejf— )] =

vt (1 = )P (e (x + p—2) +1 )]

Therefore, a BHL architecture can be expressed by means the following equations:
Feed forward : y; = Z Wijx;j, Vi 9)
j_

Feedback : ej = x; ZW,]yl (10)
Weightsupdate : AW;; = 11(6;‘_2(1 - e]-)ﬁ_z(l —atei(a+p—2)))yi (11)

where 77 is the learning rate.
For the final implementation of the algorithm, the absolute vale of the error where used and
finally the sign operator where added to the final result in the weights update.

3.3. Dataset

In this research, BHL has been applied to 3 real datasets. Each dataset consists of the
monitorization of simple networks where different anomalous situations occur. The dataset analyzed
in present research has been generated in a small-size university network.

In all cases, the same 5 variables were monitored:

e PacketID.

e  Timestamp: respect to the first captured packet.

*  Source Port: It is the host port from which the packet is sent.

¢ Destination Port: It is the host port to which the packet is sent.
*  Packet Size.

*  Protocol ID: from 1 to 35 for different packet protocols.

Each dataset contains the data that had been collected during the monitoring of a network in a
period where a specific attack occured. The type of attack is different in each dataset. A small part of
the data is captured for analysis.Consequently, only the above-mentioned 5 fields of packet headers
are used [23], and one output variable is only used to show the real category (normal and attack) but it
is never used for training.

4. Experiments and Results

The BHL algorithm is applied as a clustering technique to identify the internal structure of the
3 datasets and any anomalous situations present in each one. As, the dataset condition in a great
manner the selection of optimal parameters, different values combinations of « and  parameters
were tried and the best combination was selected (Table 1). Once the best parameters were obtained,
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several runs with random weights initialization were performed for validating the repeatability of the
obtained results.

Table 1. Dataset description

Dataset Description N° Samples | N° of Attacks
1 Type of attack: Scans. In this type of attack, diverse 866 18 attacks x 3 ports =
messages are sent to various host ports to extract 54 attacks

information about the activity status. An external agent
could send these messages with the aim of getting
information about host network services. However,
in the case of a network scan, the target of several hosts
is a specific port (frequently, a single IP address range
for all hosts). The target port numbers are 161, 162,
and 3750 in the same IP address range for all machines.
2 Type of attack: MIB (management information base) 5000 226 attacks
Information Transfer. In this attack part of the
information (or all) of SNMP MIB is captured,
usually by means of get/get-bulk command, which
represents a potentially dangerous situation. However,
some queries of MIB could belong to a “normal”
network behavior.

3 Type of attack: It is a combination of Scan and MIB 5866 18 attacks x 3 ports
Information Transfer. = 54 port attacks and
226 MIB attacks

In the case of the k-means algorithm, to ensure good results in the creation of the cluster,
the k-means algorithm was random initialization of the centroids, and the training was repeated
20 times. These repetitions allow avoiding to finish the training in a local minimum.

In all cases, Matlab software was used to analyze the 3 datasets with both algorithms.
The implmentation of BHL was done according to previous researches [37] and the Matlab version of
the k-means algorithm was used.

Table 2 shows the best combination of parameters and Figures 1-6 the projections for each dataset
and algorithm (BHL and k-means).

Table 2. BHL and k-means parameters for datasets 1,2 and 3.

Algorithm Parameters

BHL (dataset 1) iters = 3000, Irate =0.01,« =3, =3

BHL (dataset 2) iters = 10,000, Irate =0.01,a =3, =4

BHL (dataset 3) iters = 10,000, Irate = 0.05, 4 = 3.5, 6 =5

k-means (dataset 1,2and 3) | k = 6, random initialization of the centroids,
sqEuclidean distance

The axes of BHL projections correspond to the first two components of the new subspace
(as non-linear combinations of the original space), which do not have any meaning or direct relationship
with the variables of the original dataset.”

Figure 2, shows the best projection of BHL for dataset 1, it shows that BHL can clearly identify
3 clusters which correspond to each scan port attack (port numbers 161, 162, and 3750).

Figure 3 shows the results obtained in past researches. It can be observed that, like BHL, there also
were 3 clusters in the results, which correspond to different types of scan port attacks. Therefore, due
to the simplicity of this dataset, it is not possible to get better results, and in all cases, the scan port
attack can be identified easily (k-means clustering was applied to the projected data representation).

Nevertheless, in the case of dataset 2, the are significant differences. In the case of BHL,
its projection shows a clear distinction between a normal (green crosses Figure 4), and an abnormal
situation (MIB transfer source-destination, red dots in Figure 5). In the case of MOVICAB-IDS, the final
projection mixes both classes (normal and attack), in different clusters (see Figure 5).
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Figure 2. BHL projection for dataset 1, port scan attack.
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Figure 3. MOVICAB projection for dataset 1, port scan attack.

Finally, dataset 3 presents a combination of 2 types of attacks, scan port (3 port attacks) and MIB
transfer (source-destination and destination-source attacks), therefore, there are 5 attacks and the rest of
the sample contains information about the normal behaviour of the network. Figure 6 presents the best
BHL projection for dataset 3 (MIB transfer and scan port). In this case, BHL can clearly differentiate
between the samples associated with normal network behaviour (green samples in Figure 6) and the
samples belonging to abnormal situations. Moreover, BHL can distinguish the different types of scan
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port (red, blue and cyan samples in Figure 6) and MIB transfer attacks (2 types, yellow and magenta
samples in Figure 6).
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Figure 4. BHL projection for dataset 2, MIB transfer attack.
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Figure 5. MOVICAB projection for dataset 2, MIB transfer attack.

However, in previous researches (see Figure 7), MOVICAB-IDS was not able to generate separate
groups without mistakes, as it mixed packets belonging to different categories, failing to distinguish
between normal and abnormal samples. It is important to remark, that MOVICAB-IDS was able
to detect 3 classes; normal samples, scan port, and MIB, however, it was not able to distinguish
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between the different types of attacks; as can be seen in Figure 7, it confused MIB transfer with normal

samples. On the contrary, BHL is able to clearly distinguish between all the types of attacks, including
destination-source and source-destination MIB transfer attacks.

0~
. Normal
e  Attack: Scan 161
-0.1 e Attack: Scan 162
Attack: Scan 3750
o  Attack: MIB-1
0.2 e  Attack: MIB-2
03|
~
2 -04
o)
c
g
g 05
o
O
—
T -06
[aa]
-
0.7 /
0.8 -
0.9 - o
_l 1 1 1 1 1 1 I
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

BHL Component 2

Figure 6. BHL projection for dataset 3, MIB transfer and port scan attacks.
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Figure 7. MOVICAB projection for dataset 3, MIB transfer and port scan attacks.
5. Conclusions
The increase in data traffic in smart grids makes them increasingly vulnerable to cyberattacks.

Having the tools that permit the correct analysis and visualization of data traffic in these networks
becomes increasingly important. Therefore, the use of tools that are capable of visually representing
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the general behavior of these networks (in terms of data traffic), allows to quickly and easily detect
possible attacks that cause abnormal network behavior.

The results presented in Section 4 demonstrate that Dimensional Reduction Techniques (DRT),
provide a general overview of the internal dataset structure. This helps prevent potential cyberattacks
in smart grids through the visual inspection of the network’s traffic data.

The previously applied DRTs were able to visually represent the behaviour of the network’s traffic
data, however, their clustering is not good enough, especially in the case of different types of attacks
that are produced at the same time (MIB and Scan port).

On the contrary, BHL gives a detailed overview of the network traffic and provides well-defined
clusters that make it possible to identify anomalous situations and different types of attacks,
overcoming the challenges associated with data volume, system dynamics and network traffic diversity,
including first-time attacks (0-day).

The clarity of BHL projections makes it easy to distinguish between normal traffic and anomalous
traffic patterns, facilitating the early detection of attacks. BHL can easily identify scan port attacks at
different ports. Moreover, when this type of attack is combined with the MIB attack, BHL is not only
able to distinguish between them but also between the two types of MIB attack and the scanned ports.
This makes BHL a powerful tool for network management protocols.

The results of the conducted experiment have proven that BHL's performance is superior to that
of the techniques used in previous researches, proving comprehensible projections, where attacks are
clearly distinguished from the normal behaviour of the network, even when different types of attacks
occur at the same time.

The results obtained by EPP algorithms such as BHL demonstrate that they are suitable to be
applied in smart grids for the detection of intrusions in the network. In conclusion, advances have
been made in the early identification and characterization of cyberattacks. However, there is still a lot
of room for improvement, especially in relation to the security of Smart Grids.
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